Oddpoet's βetalog

詩를 쓰듯 코드를 써라

SPDY : 더 빠른 웹을 위한 실험적인 프로토콜

이 글은 SPDY의 백서 “SPDY : An experimental protocol for a faster web“를 번역한 글입니다.

개요

“웹을 더 빠르게 하자(Let’s make the web faster)” 계획의 부분으로써 우리는 웹페이지들의 반응속도를 높일 수 있는 대안 프로토콜을 실험 중에 있다. 이러한 실험 중에 하나가 SPDY(SPeeDY-스피디라고 읽는다)인데, SPDY는 웹에서 컨텐츠 전송을 위한 애플리케이션 레이어 프로토콜이다. 이 프로토콜 명세와 더불어 우리는 SPDY를 지원하는 구글 크롬 브라우저와 오픈소스 웹서버를 만들었다. 내부 테스트를 통해 우리는 HTTP와 SPDY 위의 어플리케이션의 성능을 비교한 결과 SPDY를 사용할 때 페이지 로드 타임을 64%정도 줄일 수 있었다. 우리는 오픈 소스 커뮤니티에 아이디어, 피드백, 코드, 테스트 결과들을 기여함으로써 보다 SPDY가 빠른 웹을 위한 차세대 애플리케이션 프로토콜이 되길 바란다.

배경 : 웹 프로토콜과 웹 반응속도

현재 웹에서 사용하는 프로토콜은 HTTP와 TCP이다. TCP는 일반적이고 신뢰성있는 전송프로토콜(transport protocol)로써 전송 보증(guaranteed delivery), 중복 제거(duplicate suppression), 순서유지(in-order delivery), 흐름제어(flow control), 혼잡 회피(congestion avoidance) 등을 제공한다. HTTP는 어플리케이션 레벨 프로토콜로써 기본적인 요청/응답의 시맨틱스를 제공한다. 우리는 전송계층(transport layer)에서 반응속도를 개선할 가능성이 더 있다고 생각하지만, 최초에는 어플리케이션 레이어(HTTP) 쪽을 중점적으로 조사를 했다. 불행히도 HTTP는 반응속도에 대해 특별히 고려된 프로토콜이 아니었다. 게다가 현재 네트웍 상에서 전송되는 웹페이지들은 10년 전의 웹페이지들과는 많이 달라졌고, 이에 따라 HTTP가 개발되던 시절에 예상할 수 없었던 개선이 필요하게 됐다. 다음은 HTTP가 최적의 성능을 내는데 저해가 되는 기능들이다.

  • 커넥션 당 하나의 요청
    HTTP가 한번에 하나의 리소스만 가져올 수 있기 때문에(HTTP piplelining이 도움이 되지만 여전히 FIFO queue라는 제약이 있다), 500ms의 서버 지연시간이 다른 요청에 대해서 TCP channel의 재사용을 어렵게 한다. 그래서 브라우저들은 다수의 컨넥션을 사용하여 이 문제를 우회하고 있다. 2008년 이후 대부분의 브라우저들은 결국 도메인 당 커넥션 수를 2개에서 6개로 늘렸다.
  • 클라이언트만 가능한 요청

    HTTP하에서 오직 클라이언트만 요청을 보낼 수 있다. 서버 측에서 클라이언트가 어떤 리소스가 필요하리라는 걸 알더라도 클라이언트에 알릴 메커니즘이 존재하지 않는다. 서버는 클라이언트가 요청할 때까지 기다려야만 한다.
  • 압축되지 않는 요청/응답 헤더
    요즘 요청 헤더의 크기는 200byte에서 2KB까지 다양해졌다. 어플리케이션에서 쿠키를 더 많이 사용하고, user agent의 기능이 확장됨에 따라 일벅으로 헤더 크기가 700~800 바이트가 되었다. 업링크 대역폭이 아주 작은 모뎀이나 ADSL 연결에서 헤더의 데이터를 줄이는 것은 요청을 보낼 때의 응답시간을 직접적으로 향상 시킬 수 있다.
  • 중복 헤더들
    같은 채널에서의 대부분의 헤더들은 모든 요청에 반복적으로 사용된다. 그러나 User-Agent, Host, Accept* 등의 헤더 값들은 고정된 값이며 일반적으로 재전송이 필요하지 않다.
  • 선택적인 데이터 압축
    HTTP는 선택적으로 데이터에 대한 압축을 사용할 수 있다. 하지만 컨텐츠는 항상 압축되어 전송되는 것이 좋다.

기존의 접근방법들

SPDY는 HTTP를 빠르게 하려는 유일한 연구는 아니다. 웹의 반응속도 개선에 대한 제안들 있었고, 그 대부분이 전송계층이나 세션계층에서의 연구였다.

Stream Control Transmission Protocol (SCTP)
TCP를 대체하는 전송계층 프로토콜로써 멀티플렉스 스트림과 스트림 기반 혼잡제어를 제공한다.
HTTP over SCTP
SCTP 위에 HTTP를 작동하자는 제안. Comparision of HTTP Over SCTP and TCP in High Delay Networks 는 두 전송프로토콜 위에서의 성능 비교 연구 결과를 보여준다.
Structured Stream Transport (SST)
“structured streams”는 일반적인 전송층 위에서 사용될 수 있는 가볍고, 독립적인 스트림을 만드는 프로토콜. 이것은 TCP를 대체하거나 UDP의 위에서 작동할 수 있다.
MUX와 SMUX
전송계층과 어플리케이션 레이어 사이에 작동하는 중간 레이어 프로토콜. 스트림의 멀티플렉싱을 지원한다. HTTP/1.1과 비슷한 시기에 제안됐다.

상기 제안들은 웹의 반응속도 문제에 대한 부분적인 해결책을 제공한다. HTTP의 압축, 우선순위 등의 고유의 문제는 여전히 남아있고, 그 아래의 전송계층과 별개의 문제다. 현실상황의 어떤 경우라도 전송계층을 변경하는 일은 매우 어렵다. 대신 우리는 어플리케이션 레이어에서의 문제들을 정리하면서 더 쉬운 해결방안 있다고 생각했다. 이 방법은 기존의 인프라스트럭쳐에 최소한의 변경만 필요로 하고, (우리 생각에는) 상당한 성능 향상을 얻어낼 수 있을 것이다.

SPDY의 목표

SPDY 프로젝트는 웹의 반응속도를 개선할 수 있는 어플리케이션 프로토콜을 정의하고 구현한다. SPDY의 상위 수준 목표는 다음과 같다.

페이지 로드 타임 50% 감소
우리의 사전작업 결과는 이 목표에 이미 근접하고 있다. (아래)
도입 복잡도를 최소화
SPDY는 전송계층으로 TCP를 사용하여 기존 네트웍 인프라스트럭쳐에 어떤 변화도 필요로 하지 않는다.
웹사이트의 컨테츠에 변경이 필요하지 않도록 함.
SPDY는 오직 클라이언트 user agent와 웹서버만 변경하면 되도록 한다.

반응속도의 문제를 해결하기 위한 방법으로 프로토콜을 탐구하는 사람들이 함께 할 수 있도록 한다. 우리는 오픈 소스 커뮤니티와 산업계 전문가들의 협력하에서 이 새로운 프로토콜을 개발하길 원한다.

기타 기술적인 목표들은 다음과 같다.

  • 하나의 TCP 세션을 통해 다수의 HTTP요청을 동시에 수행할 수 있게 한다.
  • 헤더에 대한 압축과 불필요한 헤더를 제거함으로써 HTTP가 현재 사용중인 대역폭을 줄인다.
  • 구현하기 쉬우면서 서버측에 효율적인 프로토콜을 정의한다. 우리는 예외적인 상황들을 줄이고 파싱하기 쉬운 메시지 포맷을 정의함으로써 HTTP의 복잡도를 낮추려고 한다.
  • 전송계층 위의 SSL을 보다 보안성있고 기존 네트웍 인프라스트럭쳐에 보다 호환성이 좋게 만든다. SSL은 반응속도 측면에서는 불리하지만, 장기적인 관점에서 웹은 결국 보안 네트웍 연결에 의존하게 될 것이라 믿는다. 추가적으로 SSL의 사용이 기존의 프락시들을 통한 통신이 깨지지 않도록 보장해야 한다.
  • 서버가 클라이언트와의 통신을 시작할 수 있게 하여, 가능한 상황에서는 클라이언트에 데이터를 push해줄 수 있도록 한다.

SPDY 설계와 기능

SPDY는 SSL 위에 세션계층을 추가했다. 이것은 하나의 TCP 연결 위에서 다수의, 동시수행되는 스트림을 교차배치할 수 있게 한다.

일반적인 HTTP GET과 POST 메시지 포맷은 동일하다. 그러나 SPDY는 연결위에서 데이터를 인코딩하고 전송하는 새로운 프레이밍 포맷을 정의한다.

SPDY protocol layer

스트림들은 양방향이다. 즉, 스트림은 클라이언트와 서버에 의해서 생성될 수 있다.

기본 기능(항상 활성화됨)과 고급 기능(선택적으로 활성화)을 통해서 SPDY는 빠른 반응속도를 얻을 수 있다.

기본 기능

멀티플렉스 스트림
SPDY는 하나의 TCP 연결 위에 무제한 동시 스트림을 지원한다. 하나의 채널에서 요청들이 교차배치되기 때문에 TCP의 효율은 높아진다. 적은 네트웍 연결만 필요하고, 더 적은 수의 패킷만 사용된다.
요청 우선순위
무제한으로 스트림을 병렬화 할 수 있기 때문에 직렬화 문제를 해결할 수 있지만, 이것은 다른 문제를 만든다. 채널의 대역폭이 제한되어 있다면 채널이 막힐 수 있기 때문에 클라이언트는 요청을 블록할 수 있다. 이 문제를 극복하기 위해서 SPDY는 요청 우선순위를 구현한다 : 클라이언트는 원하는 수 만큼 요청할 수 있고, 각 요청에 우선순위를 부여한다. 이것은 네트웍 채널이 중요하지 않은 리소스들 때문에 혼잡해져서 높은 우선순위의 요청이 지연되는 것을 막는다.
헤더 압축
SPDY는 요청과 응답의 HTTP 헤더를 압축한다. 결과적으로 더 적은 수의 패킷과 더 적은 수의 데이터가 전송된다.

고급 기능 (advanced features)

SPDY는 서버에서 스트림을 생성할 수 있는 기능을 제공한다. 서버에서 생성된 스트림은 클라이언트의 요청이 없어서도 컨텐츠를 클라이언트에 전송할 수 있다. 웹개발자는 이 옵션을 2가지 방식으로 설정할 수 있다.

Server push
SPDY는 서버가 클라이언트에 데이터를 푸쉬(push)하는 것을 X-Associated-Content 헤더를 통해서 실험했다. 이 헤더는 클라이언트가 요청하기 전에 서버가 리소스를 푸시하고 있다는 것을 클라이언트에 알린다. 사용자가 사이트에 처음으로 방문하여 첫 페이지를 다운로드할 때, 이 기능은 사용자 경험을 크게 향상시킬 수 있다.
Server hint
자동으로 클라이언트에 리소스를 push하는 대신, X-Subresources 헤더를 사용하여 클라이언트가 특정 리소스를 요청하도록 제안하지만, 컨텐츠를 보내기 전에 클라이언트의 요청을 기다리게 된다. 네트웍 연결이 느린 경우, 클라이언트가 필요한 리소스들을 파악하는 걸리는 수백 밀리세컨드의 시간을 줄여줄 수 있다. 이 옵션은 초기 페이지가 아닌 페이지에서 더 나은 선택이 될 것이다.

기술적인 세부사항은 SPDY draft protocol specification을 참조하라.

SPDY 구현 : 우리가 만들어온 것들

  • HTTP와 SPDY로 TCP와 SSL 위에서 효율적으로 응답할 수 있는 high-speed의 in-memory 서버. 우리는 조만간 오픈소스로 이 코드를 릴리즈할 예정이다.
  • TCL와 SSL위에서 HTTP나 SPDY를 사용할 수 있는 수정된 구글 크롬. 소스 코드는 여기에 있다. (주: 현재 내부적인 코드네임은 “flip”이지만, 조만간 바뀌게 될 것이다.)
  • 페이지들이 정확하게 복사되었는지 검증할 수 있는 테스팅과 벤치마킹 인프라스트럭처. SPDY는 원래의 서버 헤더들과 컨텐츠 인코딩, URLs 등을 그대로 유지한다. 우리는 곧 테스팅 툴과 우리의 결과를 재활용하기 위한 가이드를 릴리즈할 것이다.

사전 실험 결과

우리가 개발한 구글 크롬 클라이언트와 웹서버를 가지고, SPDY의 HTTP 대비 성능을 벤치마크하기 위해서 많은 실험실 테스트를 수행했다.

우리는 1%의 패킷손실을 가지는 홈 네트워크 시뮬레이션 하에서 “Top 100″ 웹사이트 중 25개를 다운로드 해봤다. 각 사이트를 10번씩 다운로드했고, 평균 페이지 로딩 시간을 계산했다. 그 결과 HTTP 대비 TCP 하에서는 27%~60%정도, SSL하에서는 39%~55% 정도의 성능향상을 확인할 수 있었다.

표1 : Top 25 웹사이트들에 대한 평균 페이지 로딩 타임

DSL 2 Mbps downlink,
375 kbps uplink
Cable 4 Mbps downlink,
1 Mbps uplink
Average ms Speedup Average ms Speedup
HTTP 3111.916 2348.188
SPDY basic multi-domain* connection / TCP 2242.756 27.93% 1325.46 43.55%
SPDY basic single-domain* connection / TCP 1695.72 45.51% 933.836 60.23%
SPDY single-domain + server push / TCP 1671.28 46.29% 950.764 59.51%
SPDY single-domain + server hint / TCP 1608.928 48.30% 856.356 63.53%
SPDY basic single-domain / SSL 1899.744 38.95% 1099.444 53.18
SPDY single-domain + client prefetch / SSL 1781.864 42.74% 1047.308 55.40%
  • 많은 경우 요청 리소스가 속한 도메인의 수와 무관하게 SPDY는 하나의 연결로 모든 요청을 처리할 수 있다. 이 경우에는 모든 다운로드는 완전히 병렬로 진행될 수 있다. 그러나 모든 도메인을 하나의 도메인으로 줄일 수 없는 경우가 있는데, 이 경우에는 SPDY는 각 도메인별로 연결을 만들어야만한다. 이때 연결 생성마다 초기 RTT(round trip time)만큼의 시간이 필요하다.*

그래서 우리는 2가지 모드에 대해서 테스트를 수행했다. 하나는 모든 도메인을 하나로 줄여놓은 경우(즉, 하나의 TCP 연결)와 리소스를 원래 속한 다수의 도메인으로 나누어놓은 경우(즉, 도메인 당 하나의 TCP 연결). 우리는 테스트 결과에 이를 각각 “single-domain”과 “multi-domain”이라고 표기해놓았다. 실제 환경에서의 결과는 이 결과의 사이값이 될 것이다.

헤더 압축의 효과

헤더 압축은 요청헤더의 크기를 88%, 응답헤더의 크기를 85%정도 줄인다. 낮은 대역폭을 갖는 DSL 환경에서(업로드가 375Kbps) 요청헤더 압축은 특정사이트에서 페이지 로딩 시간에 있어서 상당한 성능향상을 보여주었다(리소스 요청이 수가 많은 경우). 헤더압축만 해도 페이지 로딩 시간을 45~1142ms만큼 줄일 수 있었다.

패킷 손실과 RTT(round-trip time)의 효과

우리는 두번째 테스트로 패킷 손실율과 RTT가 결과에 어떤 영향을 주는지 확인하기 위한 테스트를 수행했다. 이 테스트를 위해서 패킷 손실율과 RTT를 실험변수가 아니라 케이블 연결에서 측정을 했다.

우리는 SPDY의 응답시간 향상효과가 패킷손실율이 높아질 수록 증가한다는 것을 알아냈다. 패킷손실율이 2%일때 최대 48%의 성능향상이 있었다. (패킷손실이 2%는 넘어서면 성능향상폭이 줄어들기 시작해서 2.5%가 되면 성능향상율이 떨어진다. 실제 미국내에서 패킷손실율은 일반적으로 1~2%이고, RTT는 평균 50-100ms이다.)

패킷손실율이 증가할 수록 SPDY가 더 나은 이유는

  • SPDY는 HTTP보다 40% 정도 적은 패킷을 전송한다. 즉 패킷손실율의 영향을 덜 받는다.
  • SPDY는 보다 적은 TCP 컨넥션을 사용한다. 이것은 SYN packet이 손실될 가능성을 줄인다. 많은 TCP 구현에서 이것에 대한 지연은 의외로 크다. (3초)
  • SPDY는 재전송 타이머보다는 TCP의 빠른 재전송을 이용하여 TCP를 보다 효율적으로 이용한다.

SPDY는 RTT가 증가하면 더 나은 성능을 보였다. RTT가 200ms일때 최대 27%의 성능향상이 있었다. RTT가 증가할 때 SPDY가 HTTP 대비 더 나은 성능보이는 이유는 SPDY가 모든 요청을 병렬로 처리하기 때문이다. HTTP 클라이언트가 도메인당 4개의 연결을 사용하고, 20개의 리소스를 받아야 한다면, 대략 5RT(round trip)가 걸릴것이다. SPDY는 20개의 리소스를 한번의 RT만에 가져올 수 있다.

표2 : Top 25 웹사이트에 대한 평균 페이지로딩시간 (패킷손실율 별)

Average ms Speedup
Packet loss rate HTTP SPDY basic (TCP)
0% 1152 1016 11.81%
0.5% 1638 1105 32.54%
1% 2060 1200 41.75%
1.5% 2372 1394 41.23%
2% 2904 1537 47.7%
2.5% 3028 1707 43.63%

SPDY 다음 단계 : 어떻게 우리를 도울 수 있는 방법

우리의 초기 결과는 좋지만, 우리는 그것들을 어떻게 현실 세계에 적용해야 할지 잘 모르겠다. 게다가 SPDY는 더 개선할 여지들이 있다. 예를 들면

  • 대역폭 효율성은 여전히 낮다. 전화망의 대역폭 효율이 90%에 근접한다고 하지만, 고속망의 효율은 약 32% 밖에 안된다.
  • SSL은 추가적인 지연시간과 도입에 대한 난관들을 가지고 있다. SSL 핸드셰이킹를 위한 추가적인 RTT, 암호화, 프락시에서의 캐싱 문제 등이다. 우리는 SSL에 더 적합하게할 일들이 있다.
  • 우리의 패킷 손실율에 대한 실험결과로는 아직 결론을 내릴 수 었다. 패킷 손실율에 대한 연구들이 있었지만, 우리는 웹을 위한 현실적인 모델을 만들기 위한 충분한 데이터를 가지고 있지 않다. 패킷 손실율 시뮬레이션을 더 정교하게 할 수 있는 데이터들을 더 수집할 필요가 있다.
  • SPDY의 단일 커넥션은 연결이 끊겨서 복구할 경우 다수 컨넥션보다 때로는 성능이 낮을 수 있다. 특히 RTT가 매우 높을 때는 단일 커넥션보다 멀티플 커넥션이 빠를 수 있다. 언제 SPDY 클라이언트가 새로운 커넥션을 만들거나 기존 커넥션을 끊을지, 이것이 서버에 어떤 영향을 줄지를 더 고민할 필요가 있다.
  • 서버는 우리가 만든 것보다 더 지능적으로 구현할 수 있을 것이다. 서버가 스트림을 생성하는 경우, 프리패칭 제안을 위해서 클라이언트 네트웍 정보를 수집하는 등의 케이스에 대해서 더 많은 연구가 필요하다.

이런 문제에 도전하기 위해 당신이 참여하길 원한다면…

SPDY에 대한 FAQ

Q: HTTP piplelining이 이미 응답시간에 대한 문제를 해결하지 않았나요?

A: No. 파이프라이닝이 다수의 요청을 하나의 TCP 연결하에서 병렬로 보내는 것을 지원하고 있지만, 여전히 단일 스트림입니다. 스트립 내의 과정에서 지연이 발생하면(첫 요청이 long request이거나 패킷 손실이 발생하거나해서) 전체 스트림이 지연됩니다. 파이프라이닝은 적용이 어렵기도 해서 대부분의 주요 브라우저에서 기본적으로 비활성화된 채로 남아있지요.

Q: SPDY는 HTTP를 대체하는 겁니까?

A: 아니오. SPDY는 HTTP의 일부분을 대체할 뿐이고, HTTP를 확장합니다. 어플리케이션 계층의 최상위 레벨에서 요청-응답 프로토콜은 여전히 동일합니다. SPDY는 여전히 HTTP 메소드, 헤더 등을 사용합니다. 그러나 SPDY는 커넥션 관리와 데이터 전송 포맷 등의 프로토콜의 다른 부분을 오버라이드합니다.

Q: 왜 이름을 이렇게 지었습니까?

A: 우리는 이름이 ‘속도’의 의미를 내포하길 원했습니다. SPDY(SPeeDY라고 읽음)는 그에 부합할 뿐만 아니라 압축이 어떻게 속도 향상에 도움되는지를 보여주기도 하지요.

Q: SPDY는 전송계층을 변경해야합니까?

A: 전송계층의 보완이 지연을 줄일 수 있는지는 더 연구해봐야 합니다. 그러나 전송계층의 교체는 복잡한 일이고, 어플리케이션 레이어에서 TCP와 HTTP의 비효율적인 부분들을 극복할 수 있다면 현실 적용이 더 쉬울거라고 봅니다.

Q: TCP는 네트웍의 혼잡이나 붕괴를 유발하지 않는지 오랜 시간 사용되면서 검증되었습니다. SPDY가 인터넷을 깨뜨릴 수도 있습니까?

A: 아니오. SPDY는 TCP 위에서 작동하므로 TCP의 혼잡제어 알고리즘들의 혜택을 받습니다. 게다가 혼잡 제어 방법을 수정한 HTTP가 인터넷에서 동작하고 있습니다. 예를 들면, 오늘날의 HTTP 클라이언트는 하나의 서버에 6개의 연결을 동시에 엽니다. 그리고 어떤 HTTP 서버는 초기 congestion window를 4 패킷으로 증가시켰습니다. TCP가 각각의 연결들을 독립적으로 속도를 올릴 수 있기 때문에 서버는 초기부터 효과적으로 24패킷을 보낼 수 있습니다. 다수 연결에서 TCP의 slow-start 문제를 회피한 것이죠. 반면 SPDY는 하나의 연결 위에 다수의 스트림을 구현한 겁니다.

Q: SCTP는 뭡니까?

A: SCTP는 재미있는 대한 전송 프로토콜이에요. 이것은 하나의 커넥션 위에 다수의 스트림을 제공합니다. 그러나 이건 전송계층의 변경을 필요로 해서 가정용 라우터에까지 적용하려면 매우 어렵운 일이 되죠. 또한 SCTP는 은총알(silver bullet)이 아니에요. 서버와 클라이언트 사이의 채널을 효율적으로 사용하려면 어플리케이션 계층의 변경 역시 필요하죠.

Q: BEEP은 뭡니까?

A: BEEP은 비슷한 여러가지 기능을 제공하는 재미있는 프로토콜이지만, 이것은 페이지 로드 타임을 줄이는 것을 목표로 하지 않습니다. 그걸 가능하게 할 몇몇 기능이 없지요. BEEP은 바이너리 프레이밍 대신에 텍스트 기반의 프레이밍을 사용합니다. 이것은 확장성에 있어서 경쟁력있는 좋은 프로토콜이지만, 몇몇 보안 문제들도 있고 정확히 파싱하기가 어렵다는 문제도 있습니다.

Comments